Capitolo 10
RIFERIMENTI BIBLIOGRAFICI

1. Feidman R.S., Quenzer L.F. Cytology of nerve cells. In: Fundamentals of Neuropsychopharmacology, R.S. Feldman, L.F. Quenzer (eds.), pp. 41-67.  Sinauer Ass. Inc., Sunderland, 1984.

2. Le Moal M., Mesocorticolimbic Dopaminergic Neurons. Functional and Regulatory Roles. In: Psychopharmacology: The Fourth Generation of  Progress, Bloom, FE and Kupfer DJ (eds.), pp. 283-294.  Raven Press, New York, 1995.

3. Fuxe K., Agnati L., Kalia M., Goldstein M., Andersson K., Harfstrand A. Dopaminergic systems in the brain pituitary. In: Basic and clinical aspects of  Neuroscience, E. Fluckiger, E.E. Muller, M.O. Thorner (eds.), pp. 11-25.  Springer-Verlag, Berlin, 1985.

4. Kalivas PW, Neurotrasmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res. Rev.,  18,75-113, 1993

5. Le Moal M., Simon H., Mesocorticolimbic dopaminergic network: functional and regulatory roles, Physiol. Rev., 71, 155-234, 1991

6. Galey D., Jaffard R., Le Moal M., Alternation Behavior, spatial discrimination and reversal after electrocoagulation of the ventral mesencephalic tegmentum in the rat., Behav. Neural Biol., 26, 81-88, 1979

7. Gaffori O., Le Moal M., Disruption of maternal behaviour and appareance of cannibalism after ventral mesencephalic tegmentum lesion, Physiol. Behav., 23, 317-323, 1979

8. Koester J., Resting membrane potential and action potential. In: Principles of  Neural Sciences, E.R. Kandel and J.H. Scwartz (eds.), pp. 49-57.  Elsevier Sci. Publ. Co., Amsterdam, 1985.

9. Feldman R.S., Quenzer L.F. Synaptic structure and function. In: Fundamentals of neuropsychopharmacology, R.S. Feldman, L.F. Quenzer (eds.), pp. 83-115. Sinauer Ass. Inc.  Publ., Sunderland, 1984.

10. Kandel E.R., Siegelbaum S. Principles underlying electrical and chemical synaptic transmission.  In: Principles of Neural Sciences, E.R. Kandel and J.H. Schwartz (eds.), pp. 89-107. Elsevier Sci.  Publ. Co., Amsterdam, 1985.

11. Walmsley B., Alvarez F.J., Fyffe R.E.W., Diversity of structure and function at mammalian central syapses, TINS, 2, 81-88, 1998

12. Schwartz J.H. Chemical messengers: small molecules and peptides. In: Principles of Neural Science, E.R. Kandel and J.H. Schwartz (eds.), pp. 149-158.  Elsevier Sci. Publ. Co., Amsterdam, 1985.

13. Hokfelt T., Johansson O., Holets V., Meister B., Melander T. Distribution of neuropeptides with special reference to their coexistence with classical transmitters. In: Psychopharmacology: The Third Generation of Progress, H.Y. Meltzer (ed.), pp. 401-416.  Raven Press, New York, 1987

14. Deutch A.Y. and Bean A.J., Colocalization in Dopamine Neurons, In Psychopharmacology: The Fourth Generation of  Progress, Bloom, FE and Kupfer DJ (eds.), pp.197-207.  Raven Press, New York, 1995

15. Watson SJ and Cullinan WE, Cytology and Circuitry, In Psychopharmacology: The Fourth Generation of  Progress, Bloom, FE and Kupfer DJ (eds.), pp. 13-27.  Raven Press, New York, 1995

16. Schwartz J.H. Molecular aspects of postsynaptic receptors. In: Principles of  Neural Science, E.R. Kandel and J.H. Schartz (eds.), pp. 159-168. Elsevier Sci. Publ. Co. Amsterdam 1985.

17. Timmermans P.B.M.W.M., Thoolen M.J.M.C., Autoreceptors in the Central Nervous System.  Med. Res. Rev. 7/3: 307-332, 1987.

18. Iversen L.L. Uptake processes for biogenic amines. In: Handbook of Psychopharmacology, Vol. 3, Biochemistry of biogenic amines, L.L Iversen, S.D. Iversen, S.H. Snyder (eds.), pp. 381-442, Plenum Press, New York, 1975.

19. Serra G. and Gessa G.L., Manuale di Psicofarmacologia, Masson, Milano, 1990

20. Bianchine J. R. Drugs for Parkinson's discase, spasticity, and muscle spasms.  In: The pharmacological basis of therapeutics, A. Goodman Gilman, C.S. Goodman, P.W. Rali, F. Murad (eds.), pp. 437-490, McMillan Publ. Co., New York, 1985.

21. Goldstein M., Long- and Short-Term Regulation of Tyrosine Hydroxylase, , In Psychopharmacology: The Fourth Generation of  Progress, Bloom, FE and Kupfer DJ (eds.), pp. 189-196. Raven Press, New York, 1995

22. Brodie B.B., Pletscher A.P., Shore P.A. Evidence that serotonin has a role in brain function.  Science 222: 968-970, 1955.

23. Biei J.H., Bopp B.A. Amphetamine: structure-activity relationships. In: Handbook of psychopharmacology, Vol. II, L.L. Iversen S.D. Iversen and S.H. Snyder (eds.), pp. 1-39.  Plenum Press, New York, 1978.

24. Wagner L.A. Minireview.  Subcellular storage of biogenic amines. Life Sci. 17:1755-62, 1975.

25. Cooper J.R, Bloom F.E. and Roth R.H. (Eds) The biochemical basis of neuropharmacology, Oxford Univ. Press, Oxford, UK, 1996, pp. 78

26. Ketìakin T. Agonists, partial agonists, antagonists, inverse agonists and agonist/antagonists?  TIPS 8: 423-426, 1987.

27. Creese I., Sibley D.R. Receptor adaptations to central acting drugs.  Ann.  Rev. Pharmacol.  Toxic. 21: 357-91, 1981.

28. Rall T.W. Central Nervous System stimulants. The methylxanthines.  In: The Pharmacological basis of therapeutics, A. Goodman Gilman, C.S. Goodman, T.W. Rall, F. Murad (eds.), pp. 589-603.  McMillan Publ. Co., New York, 1985

29. Manji, H.K., Potter W.Z., Lenox R.H., Signal Trasduction Pathways, Molecular targets for lithium’s Action, Arch. Gen. Psych., 52, 531-543, 1995

30. Kilty JE., Lorang D., Amara S.G., Cloning and expression of a cocaine-sensitive rat dopamine transporter, Science, 254:578-579, 1991.

31. The Dopamine Receptors, Neve KA and Neve L (eds) Humana Press, 1997

32. Di Chiara G., Corsini G.U., Mereu G., Tissari A., Gessa G.L. Self-inhibitory dopamine receptors: their role in the biochemical and behavioral effects of low doses of apomorphine. In: Advances in Biochemical Psychopharmacology, Vol. 19, P.J. Roberts et al. (eds.), pp. 275-292.  Raven Press, New York, 1978.

33. Nedergaard S., Bolam J.P., Greenfield S.A. Facilitation of a dendritie calcium conductance by -5-hydroxytryptamine in the substantia nigra. Nature 333: 174-177, 1983

34. Seeman P, Niznik B.H., Dopamine D1 receptor pharmacology, ISI Atlas of Science: Pharmacology, 161-170, 1988.

35. Arnt J, Skarsfeldt T., Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacol., 18, 63-101, 1998

36. Wise R.A.: The brain and reward in the neuropharmacological basis of reward. In Liebman J., Cooper S.J., Ed. Oxford University Press, Oxford, 1989.

37. Fibiger H.C., Phillips A.G.: Role of catecholamine transmitters in reward systems: implications far the neurobiology of affect. In E. Oreland, Ed. Brain Reward Systems and Abuse. New York Press, New York, 1987, pp. 61-74

38. Blackburn J.R., Pfaus J.G., Phillips A.G.: Dopamine functions in appetitive and defensive behaviours. Progress in Neurobiol., 39: 247-279, 1992

39. Fouriezos G., Hanssan E., Wis R.A.: Neuroleptic-induced attenuation of brain stimulation reward. J.Camp. Physiol. Psychol., 92: 659-669, 1978

40. Fibiger H.C., Phillips A.G., Zis A.P.: Deficits in instrumental responding after 6-hydroxydopamine lesion of the nigra-neostriatal dopaminergic projection. Pharmacol. Biochem. Behav., 2: 87-96, 1974

41. Frank R.A., Manderscheid P.Z., Panicker 5., Wil-liams E.P., Kokoris D.: Cocaine euphoria, dyspho-ria, and tolerance assessed using drug-induced changes in brain-stimulation reward. Pharmacol. Biochem. Behav., 42: 771-779, 1992

42. Di Chiara G., Imperato A.: Drugs abused by humans preferentialiy increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Prac. Nati. Acad. Sci. U.S.A., 85: 5274-5278, 1988

43. Fiorino D.F., Coury A., Fibiger H.C., Phillips A.G.: Electrical stimulation reward sites in the ventral tegmental area increases dopamine transmis-sion in the nucleus accumbens of the rat. Behav. Brain Res., 55: 131-141, 1993

44. Pettit E.O., Justice J.B. Jr.: Effect of dose on cocaine self-administration behavior and dopamine levels in the nucleus accumbens. Brain Res., 539: 94-102, 1991.

45. Yokel R.A., Wise R.A.: Increased level pressing for amphetamine after pimozide in rats: implica-tions for a dopamine theory of reward. Science, 187: 547-549, 1975

46. Shaham Y., Stewart J.: Exposure to mild stress enhances the reinforcing efficacy of intravenous heroin self-administration in rats. Psychopharmacology, 114: 523-527, 1994.

47. Weiss F., Lorang M.T., Bloom F.E., Koob 0.F.: Oral alcohol self-administration stimulates dopamine release in the rat nucleus accumbens: genetic and motivational determinants. Pharmacol. Exp. Ther., 267: 250-258, 1993

48. Roberts D.C.S., Koob G.F.: Disruption of cocaine self-administration following 6-hydroxy-dopamine lesions of the ventral tegmental area in rats. Pharmacol. Biochem. Behav., 17: 901-904, 1982

49. Lyness W.H., Friedie N.M., Moore K.E.: Destruction of  dopaminergic nerve terminals in the nucleus accumbens: effect on d-amphetamine self-administration. Pharmacol. Biochem. Behav., 11:553-556, 1979

50. Roberts D.C.S., Koob G.F., Klonoff E., Fibiger H.C.: Extinction and recovery of cocaine self--administration following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacol. Bio-chem. Behav., 12: 781-787, 1980

51. Pettit H.C., Justice J.B. Jr.: Dopamine in the nucleus accumbens during cocaine self administration as studied by in vivo microdialysis. Pharmacol. Biochem. Behav., 34: 899-904, 1983

52. Hemby S.E., Martin T.J., Co C., Dworkin S.I., Smith J.E.: The effects of intravenous heroin administration on extracellular nucleus accumbens dopamine concentrations as determined by in vivo microdialysis. J. Pharmacol. Exp. Ther., 273:592-598, 1995

53. Melis M.R., Argiolas A.: Dopamine and sexual behaviour. Neurosci. Biobehav. Rev., 19:19-38, 1995

54. Pfaus J.G., Damsma G., Nomikos G.G.., Wenk-ster D.G., Blaha C.D., Phillips A.G., Fibiger H.C.: Sexual behavior enhances central dopamine transmission in the male rat. Brain Res., 530: 345-348, 1990

55. Agmo A., Fernandez H.: Dopamine and sexual behavior in the male rat: A revaluation. J. Neural. Transm., 77: 21-37, 1989

56. Damsma G., Pfaus J.G., Wenkstern D., Phillips A.G., Fibiger H.C.: Sexual behavior increases dopamine transmission in the nucleus accumbens and striatum of male rats: comparison with novelty and locomotion. Behav. Neurosci., 106: 181-191, 1992

57. Pleim E.T., Matochick J.A., Barfield R.J., Auer-bach S.B.: Correlation of dopamine release in the nucleus accumbens with masculine sexual behavior in rats. Brain Res., 524: 160-163, 1990

58. Agmo A., Berenfeld R.: Reinforcing properties of ejaculation in the male rat: role of opioids and dopamine. Behav. Neurosci., 104: 177-182, 1990

59. McCullough L.D., Salamone J.D.: Involvement of nucleus accumbens dopamine in the motor activity induced by periodic food presentation: a micro-dialysis and behavioral study. Brain Res., 592: 29-36, 1992

60. Hernandez L., Hoebel B.G.: Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measures by microdialysis. Life Sci., 42: 1705-1712, 1988

61. Schildkraut J.J., Watson R.K., Draskoczy P.R. et  al.: Amphetamine withdrawal: depression and MHPG excretion. Lancet, 1971; 2: 485-486.

62. Weddington W.W., Brown B.S., Haertzen C.A. et al.: Changes in mood, craving, and sleep during short-term abstinence reported by male cocaine addicts. A controlled, residential study. Arch. Gen. Psychiatry, 47: 861-868, 1990

63. Gawin F.H., Kleber H.D.: Abstinence symptomatology and psychiatric diagnosis in chronic cocaine abusers. Arch. Gen. Psychiatry, 1986; 43:108-116.

64. Watson R.: Amphetamine withdrawal: Affective state, sleep patterns and MHPG excretion. Am. J. Psychiatry, 129: 263-269, 1972

65. Watson R., Bakos L., Compton E., Gawin F.: Cocaine use and withdrawal: the effect an sleep and mood. Am. J. Drug Alcohol Abuse, 18:2128-2132, 1992

66. Markou A., Koob G.F.: Post cocaine anhedonia: an animal model of cocaine withdrawal. Neuropsychopharmacology, 4: 17-26, 1991

67. Mucha R.F.: Is the motivational effect of opiate withdrawal reflected by common somatic indices of precipitated withdrawal? A place conditioning study in the rat. Brain Res., 418: 214-220, 1987

68. Pilcher C.W.T., Stolemar I.P.: Conditioned flavor aversion for assessing precipitated morphine abstinence in rats. Pharmacol. Biochem. Behav., 4: 327-334, 1976

69. Robertson M.W., Leslie C.A., Bennett J.P.Jr.: Apparent synaptic dopamine deficiency induced by withdrawal from chronic cocaine treatment. Brain Res., 538: 337-339, 1991

70. Rossetti Z.I., Hmaidan Y., Gessa G.L.: Marked inhibition of mesolimbic dopamine release: a common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. Eur. J. Pharmacol., 221:227-234, 1992

71. Acquas E., Carboni E., Di Chiara G.: Profound depression of mesolimbic dopamine release after morphine withdrawal in dependent rats. Eur. J.Pharmacol., 193: 133-13, 1991

72. Acquas E., Di Chiara G.: Depression of mesolimbic dopamine transmission and sensitization morphine during opiate abstinence. J. Neurochem.,58: 620-1624, 1992.

73. Willner P.: Animal models of depressions: validity and application. In Gessa G.L., Ed. Neurobiology Treatment, Raven Press, New York, 1995; 19-41.

74. Porsolt R.D.: Behavioral despair. In: Enna S.J. Ed. Antidepressant: neurochemical, behavioral and clinical perspective, Raven Press, New York, 1981, pp. 121-139.

75. Gambarana C., Ghiglieri O., Taddei I., Tagliamonte A., De Montis M.G.: Imipramine and fluoxetine prevent the learned helplessness behavior acquisition in rats through a distinct mechanism of action. Behav. Pharmacol., 5: 66-73, 1995

76. Willner P.: Dopamine and depression: a review of recent evidence. Brain Res.  Rev.,  13:181-186, 1983

77. Rossetti Z.L., Lai M., Hmaidan Y., Gessa G.L.: Depletion of mesolimbic dopamine during behavioral despair: partial reversal by chronic imipramine. Eur. J. Pharmacol., 242: 313-315, 1993

78. Serra G; Argiolas A., Fadda F., Melis MR, Gessa GL ., Repeated electroconvulsive shock prevents the sedative effect of small doses of apomorphine, Psychopharmacol., 73: 194-196, 1981.

79. Serra G; Collu M; D'Aquila PS; De Montis GM; Gessa GL Possible role of dopamine D1 receptor in the behavioural supersensitivity to dopamine agonists induced by chronic treatment with antidepressants. Brain Res, 527: 234-43, 1990.

80. Collu M; Poggiu AS; Devoto P; Serra G, Behavioural sensitization of mesolimbic dopamine D2 receptors in chronic fluoxetine-treated rats. Eur. J. Pharmacol. 322: 123-127, 1997

81. Rossetti ZL; D'Aquila PS; Hmaidan Y; Gessa GL; Serra G, Repeated treatment with imipramine potentiates cocaine-induced dopamine release and motor stimulation., Eur J Pharmacol,  201: 243-5,1991.

82. Serra G., Collu M., D'Aquila P.S., Gessa G.L.. Role of the mesolimbic dopamine system in the mechanism of action of antidepressants. in: Proceedings of XVIII C.I.N.P. Congress Satellite Symposium «The Biology and Pharmacology of Manic-Depressive Disordes: from Molecular Theories to Clinical Practice», Copenhagen. Pharmacol.. Toxicol., 1992; 71: 72-85

83. Serra G., Collu M., D'Aquila P.S., De Montis, M.G., Gessa G.L.. On the mechanism involved in the behavioral supersensitivity to DA agonists induced by chronic antidepressants, in Dopamine and Mental Depression, Gessa GL and Serra G (Eds), Pergamon Press, Oxford, Adv. in the Biosciences vol. 77, 1990, pp. 121-138

84. De Montis GM; Devoto P; Gessa GL; Porcella A; Serra G; Tagliamonte A, Selective adenylate cyclase increase in the limbic area of long-term imipramine-treated rats. Eur J Pharm 180. 169-74, 1990

85. Serra G; Collu M; D'Aquila PS; De Montis GM; Gessa GL Does chronic imipramine facilitate neurotransmission at dopamine-D1 receptor level? Pharmacol. Res., 21: s55-s56, 1989.

86. Serra G., Collu M., D'Aquila P.S., De Montis G.M., Gessa G.L.: Possible role of dopamine D1 receptor in the behavioural supersensitivity to dopamine agonists induced by chronic treatment with antidepressants. Brain Res., 527: 234-243, 1990

87. Serra G; Collu M; D'Aquila P; Pani L; Gessa GL Are D1 dopamine receptor agonists potential antidepressants? Pharmacol Res. Comm., 20: 1121-1122, 1988.

88. D'Aquila PS; Collu M; Pani L; Gessa GL; Serra G., Antidepressant-like effect of selective dopamine D1 receptor agonists in the behavioural despair animal model of depression., Eur. J. Pharmacol., 262:107-111, 1994.

89. De Montis GM; Devoto P; Gessa GL; Meloni D; Porcella A; Saba P; Serra G; Tagliamonte ACentral dopaminergic transmission is selectively increased in the limbic system of rats chronically exposed to antidepressants. Eur J Pharmacol. 180: 31-35, 1990

90. Serra G; Argiolas A., Fadda F., Melis MR, Gessa GL ., REM sleep deprivation induces subsensitivity of dopamine receptors mediating sedation in rats, Eur J Pharmacol. 72: 131-135, 1981.

91. Nomikos G.G., Damsma O., Wenkstern D., Fibiger  H.C.:  Chronic  desipramine enhances amphetamine-induced increases in interstitial concentrations of dopamine in the nucleus accumbens. Eur. J. Pharmacol.,195: 63-73, 1991

92. Serra G; Argiolas, A; Klimek, V., Fadda F., Gessa GL, Chronic treatment with antidepressants prevents the inhibitory effect of small doses of apomorphine on dopamine synthesis and locomotor activity. Life Sci., 25: 415-424, 1979.

93. [1]Spyraki C., Fibiger HC., Behavioural evidence of supersensitivity of postsinaptic dopamine receptors in the mesolimbic system after chronic administration of desipramine, Eur. J. Pharmacol., 74, 195-206, 1981

94. Rosin DL, Melia K., Knorr AM., Nestler EJ, Roth RH, Duman RS, Chronic imipramine alters the activity and posphorylation state of tyrosine hydroxylase in dopaminergic regions of rat brain, Neuropsychopharmacol., 12: 113-121, 1995

95. Serra G; Collu M; Gessa GL, Yawning is elicited by D2 dopamine agonists but is blocked by the D1 antagonist, SCH 23390. Psychopharmacol. 91: 330-333, 1987

96. De Montis GM; Devoto P; Gessa GL; Meloni D; Porcella A; Saba P; Serra G; Tagliamonte A Chronic imipramine reduces (3H)SCH 23390 binding and DA-sensitive adenylate cyclase in the limbic system. Eur J Pharmacol., 167: 299-303, 1989.

97. Dziedzicka-Wasylewska M., Rogoz R., Klimek V., Maj J., Repeated adimistration of antidepressant drugs affect levels of mRNA coding for D1 and D2 dopamine receptor in the rat brain, J Neural Transm., 104, 515-524, 1997

98. Starkstein SE, Dysthymia in Parkinson's disease, in Dysthymia in Neurological disorders, Licinio J, Prilipko L., and Bolis C.L. (Eds.) WHO, Geneva, 1997, pp. 83-85

99. Cabib, S; and Puglisi-Allegra S., Stress, depression and the mesolimbic dopamine system. Psychopharmacology Berl., 1996, 128: 331-342

100. Deutch, AY; Lee MC; Gillham MH; Cameron DA; Goldstein M; Iadarola MJ Stress selectively increases fos protein in dopamine neurons innervating the prefrontal cortex. Cereb Cortex., 1: 273-292 1991

101. Deutch, AY; Cameron, DS Pharmacological characterization of dopamine systems in the nucleus accumbens core and shell. Neuroscience., 46: 49-56, 1992

102. Kalivas, PW; Duffy, P Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress. Brain Res., 675: 325-328, 1995

103. King, D; Zigmond, MJ; Finlay, JM Effects of dopamine depletion in the medial prefrontal cortex on the stress-induced increase in extracellular dopamine in the nucleus accumbens core and shell. Neuroscience., 77: 141-153, 1997

104. Tidey, JW; Miczek, KA, Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study.  Brain Res., 721: 140-149, 1996

105. Inoue T; Tsuchiya K; Koyama T Regional changes in dopamine and serotonin activation with various intensity of physical and psychological stress in the rat brain. Pharmacol Biochem Behav., 49: 911-920, 1994

106. Jordan, S; Kramer, GL; Zukas, PK; Petty, F Previous stress increases in vivo biogenic amine response to swim stress. Neurochem Res., 19: 1521-1525, 1994

107. Henry, C; Guegant, G; Cador, M; Arnauld, E; Arsaut, J; Le-Moal, M; Demotes-Mainard J Prenatal stress in rats facilitates amphetamine-induced sensitization and induces long-lasting changes in dopamine receptors in the nucleus accumbens. Brain Res.,  685: 179-186, 1995

108. Alonso, SJ; Navarro, E; Rodriguez, M, Permanent dopaminergic alterations in the n. accumbens after prenatal stress. Pharmacol. Biochem. Behav., 49: 353-358, 1994

109. Cabib, S; Puglisi-Allegra, S; D'Amato, FR Effects of postnatal stress on dopamine mesolimbic system responses to aversive experiences in adult life. Brain Res., 604: 232-239, 1993

110. Brake, WG; Noel, MB; Boksa, P; Gratton, A Influence of perinatal factors on the nucleus accumbens dopamine response to repeated stress during adulthood: an electrochemical study in the rat. Neuroscience, 77: 1067-1076, 1997

111. Lipska, BK; Chrapusta, SJ; Egan, MF; Weinberger, DR Neonatal excitotoxic ventral hippocampal  damage alters dopamine response to mild repeated stress and to chronic haloperidol. Synapse., 20: 125-130, 1995.

112. Kaneyuki, H; Yokoo, H; Tsuda, A; Yoshida, M; Mizuki, Y; Yamada, M; Tanaka, M Psychological stress increases dopamine turnover selectively in mesoprefrontal dopamine neurons of rats: reversal by diazepam. Brain Res., 557: 154-161, 1991.

113. Doherty, MD; Gratton, A Medial prefrontal cortical D1 receptor modulation of the meso-accumbens dopamine response to stress: an electrochemical study in freely-behaving rats. Brain Res., 715: 86-97, 1996

114. Murphy, BL; Arnsten, AF; Goldman, Rakic, PS; Roth, RH Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc Natl Acad Sci, U.S.A., 93: 1325-1329, 1996

115. Murphy, BL; Arnsten, AF; Jentsch, JD; Roth, RH Dopamine and spatial working memory in rats and monkeys: pharmacological reversal of stress, induced impairment.  J. Neurosci., 16: 7768-7775, 1996

116. Meiergerd, SM; Schenk, JO; Sorg, BA Repeated cocaine and stress increase dopamine clearance in the rat medial prefrontal cortex.  Brain Res., 773: 203-207, 1997

117. Zahrt, J; Taylor, JR; Mathew, RG; Arnsten, AF Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance.  J Neurosci., 17: 8528-8535, 1997,

118. Keefe, KA; Stricker, EM; Zigmond, MJ; Abercrombie, ED Environmental stress increases extracellular dopamine in striatum of 6-hydroxydopamine-treated rats: in vivo microdialysis studies. Brain Res., 527: 350-353, 1990.

119. Deutch, AY; Clark, WA; Roth, RH Prefrontal cortical dopamine depletion enhances the responsiveness of mesolimbic dopamine neurons to stress Brain Res., 521: 311-5, 1990

120. Jaskiw, GE; Karoum, FK; Weinberger, DR Persistent elevations in dopamine and its metabolites in the nucleus accumbens after mild subchronic stress in rats with ibotenic acid lesions of the medial prefrontal cortex. Brain Res., 534: 321-323, 1990.

121. Feenstra, MG; Kalsbeek, A; van-Galen, H Neonatal lesions of the ventral tegmental area affect monoaminergic responses to stress in the medial prefrontal cortex and other dopamine projection areas in adulthood. Brain Res., 596: 169-182, 1992.

122. Zebrowska-Lupina, I; Stelmasiak, M; Porowska, A Stress-induced depression of basal motility: effects of antidepressant drugs. Pol J Pharmacol Pharm., 42: 97-104, 1990

123. Sampson , D; Willner, P; Muscat, R Reversal of antidepressant action by dopamine antagonists in an animal model of depression. Psychopharmacology Berl., 104: 491-495, 1991

124. Muscat, R; Papp, M; Willner, P Reversal of stress, induced anhedonia by the atypical antidepressants, fluoxetine and maprotiline. Psychopharmacology, Berl., 109: 433-438, 1992.

125. Papp, M; Willner, P; Muscat, R Behavioural sensitization to a dopamine agonist is associated with reversal of stress, induced anhedonia. Psychopharmacology, Berl., 110: 159-164, 1993.

126. Willner, P; Lappas, S; Cheeta, S; Muscat, R Reversal of stress, induced anhedonia by the dopamine receptor agonist, pramipexole. Psychopharmacology, Berl., 115: 454-462, 1994.

127. Willner P., Pharmacology of anhedonia.  Eur. Neuropsychopharmacol. 5 (suppl 3), 214s-221s, 1995.

128. Kiyatkin, EA; Belyi, VP; Rusakov, DYu; Maksimov, VV; Pankratova, NV; Rozhanets, VV, Long-term changes of striatal D-2 receptors in rats chronically exposed to morphine under aversive life conditions. Int J Neurosci., 58: 55-61, 1991.

129. Tomic, M; Joksimovic, J Glucocorticoid status affects the response of rat striatal dopamine D2 receptors to hyperthermia and turpentine treatment. Endocr Regul., 25: 225-230, 1991

130. Puglisi-Allegra, S; Kempf, E; Schleef, C; Cabib, S Repeated stressful experiences differently affect brain dopamine receptor subtypes. Life Sci., 48: 1263-1268, 1991.

131. Papp, M; Klimek, V; Willner, P Parallel changes in dopamine D2 receptor binding in limbic forebrain associated with chronic mild stress, induced anhedonia and its reversal by imipramine. Psychopharmacology Berl., 115: 441-446, 1994.

132. Sato, Y; Kumamoto, Y Psychological stress and sexual behavior in male rats. II. Effect of psychological stress on dopamine and its metabolites in the critical brain areas mediating sexual behavior Nippon Hinyokika Gakkai Zasshi., 83: 212- 219, 1992.

133. Wang, CT; Huang, RL; Tai, MY; Tsai, YF; Peng, MT Dopamine release in the nucleus accumbens during sexual behavior in prenatally stressed adult male rats. Neurosci Lett., 200:29-32, 1995.

134. Sugiura, K; Yoshimura, H; Yokoyama, M An animal model of copulatory disorder induced by social stress in male mice: effects of apomorphine and L, dopa. Psychopharmacology  Berl., 133: 249-255, 1997.

135. Glavin, GB, Central dopamine involvement in experimental gastrointestinal injury Prog Neuropsychopharmacol Biol Psychiatry., 16:217-221, 1992

136. Glavin, GB, Dopamine: a stress modulator in the brain and gut. Gen Pharmacol., 23: 1023-1026, 1992

137. Desai, JK; Parmar, NS Gastric and duodenal anti-ulcer activity of sulpiride, a dopamine D2 receptor antagonist, in rats. Agents Actions., 42: 149-153, 1994.

138. Puri, S; Ray, A; Chakravarti, AK; Sen, PA A differential dopamine receptor involvement during stress ulcer formation in rats. Pharmacol Biochem Behav., 47: 749-752, 1994.

139. Nomura, K; Maeda, N; Yoshino, T; Yamaguchi, I Different mechanisms mediated by dopamine D1 and D2 receptors are involved etiologically in activity, stress gastric lesion of the rat. J Pharmacol Exp Ther., 273: 1001-1007, 1995

140. Kawakita, N; Nagahata, Y; Saitoh, Y Immunohistochemical study of dopamine in rat gastric mucosa with acute gastric ulcer. J Gastroenterol., 29: 695-702, 1994

141. Lechin, F; van-der-Dijs, B; Rada, I; Jara, H; Lechin, AE; Cabrera, A; Lechin, ME; Jimenez, V; Gomez, F; Villa, S; et-al Plasma neurotransmitters and cortisol in duodenal ulcer patients. Role of stress. Dig Dis Sci., 35: 1313-1319, 1990

142. Akil, HA and Morano, IM, Stress In Psychopharmacology the Fourth Generation of Progress, Kupfer D. and Bloom F. (Eds), Raven Press, Ltd, New York, 1995, pp. 773-785

143. [1] Freeman, HL Historical and nosological aspects of dysthimia. Acta Psychiatr Scand, 89S, 7-11, 1994

144. Slater E, Roth M., Clinical Psychiatry 3rd edn. London, Bailliere, Tindall & Cassell, 1969

145. Arieti S., The American Handbook of Psychiatry, 2nd edn. New York, Basic Books, 1974

146. Redlich FC, Freedman DX. The theory and pratice of psychiatry, New York, Basic Books, 1974

147 Schildkraut JJ, Klein DF. The classification and treatment of depressive disorder. In: Shader RI, ed.  Manual of Psychiatric Therapeutics. Boston: Little Brown, 1975

148 Klein DF, Gittelman R, Quitkin FM, Rifkin A. Diagnosis and drug treatment of psychiatric disorders; adults and children, Ed. 2  Baltimore, Wilkinson & Wilkins, 1980

149 Klein DF. Pathophysiology of depressive syndromes.  Biol Psychiatr., 8, 119-120, 1974

150 Lecrubier Y. Thymasthenia: clinical and pharmacological aspects. "Psychiatry in the 8Os." Excerpta Medica 7, 5-6, 1989

151 Sokoloff P, Grios B, Martres MP et al. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature, 347:146-150, 1990

152 Schoemaker Y, Claustre D., Fage L et al., Neuroschemical  Characteristics of Amisulpride, an Atypical Dopamine D2/D3 Receptor Antagonist with Both Presynaptic and Limbic Selectivity, J. Pharmcol. Exp. Ther., 280, 83-97, 1997

153 Puech AJ, Simon P, Boissier JR.  Benzamides and classical neurolep­tics: comparison of their actions using 6-apomorphine-induced effects.  Eur  J Pharmacol., 50, 291-300, 1978

154 Guyon A, Assouly-Besse F, Biala G, et al., Potentiation by low doses of selected neuroleptics of food-induced con­ditioned place preference in rats. Psychopharmacol., 110, 460-466, 1993.

155 Widlöcher D, Allilaire JF, Guérard des Lauriers A, Lecrubier Y. L'Amisulpride, neuroleptique et antidéficitaire.  Encéphale, XVI, 159-163, 1990

156 Lecrubier Y, Boyer P, Turjanski S, Rein W Amisulpride versus imipramine and placebo in dysthymia and major depression. Amisulpride Study Group. J Affect Disord 43, 95-103, 1997

157 Speller JC, Barnes TR, Curson DA, Pantelis C, Alberts JL One-year, low-dose neuroleptic study of in-patients with chronic schizophrenia characterised by persistent negative symptoms. Amisulpride v. haloperidol. Br J Psychiatry 171, 564-568, 1997

158 Ramaekers JG, Louwerens JW, Muntjewerff ND, Milius H, de Bie A, Rosenzweig P, Patat A, O'Hanlon JF Psychomotor, Cognitive, extrapyramidal, and affective functions of healthy volunteers during treatment with an atypical (amisulpride) and a classic (haloperidol) antipsychotic. J Clin Psychopharmacol 19, 209-221, 1999.

159 Chabannes JP, Pelissolo A, Farah S, Gerard D Evaluation of efficacy and tolerance of amisulpride in treatment of schizophrenic psychoses] Encephale 24, 386-392, 1998.

160 Danion JM, Rein W, Fleurot O Improvement of schizophrenic patients with primary negative symptoms treated with amisulpride. Amisulpride Study Group. Am J Psychiatry 156, 610-616, 1999.

161 Möller HJ, Boyer P, Fleurot O, Rein W Improvement of acute exacerbations of schizophrenia with amisulpride: a comparison with haloperidol. PROD-ASLP Study Group. Psychopharmacology (Berl) 132, 396-401, 1997.

162 Wetzel H, Gründer G, Hillert A, Philipp M, Gattaz WF, Sauer H, Adler G, Schröder J, Rein W, Benkert O Amisulpride versus flupentixol in schizophrenia with predominantly positive symptomatology -- a double-blind controlled study comparing a selective D2-like antagonist to a mixed D1-/D2-like antagonist. The Amisulpride Study Group. Psychopharmacology (Berl), 137, 223-232, 1998.

163 Puech A, Fleurot O, Rein W Amisulpride, and atypical antipsychotic, in the treatment of acute episodes of schizophrenia: a dose-ranging study vs. haloperidol. The Amisulpride Study Group. Acta Psychiatr Scand. 1, 65-72, 1998.

164 Saletu B, Küfferle B, Grünberger J, Földes P, Topitz A, Anderer P Clinical, EEG mapping and psychometric studies in negative schizophrenia: comparative trials with amisulpride and fluphenazine. Neuropsychobiology  29, 125-135, 1994.

165 Coulouvrat C, Dondey-Nouvel L Safety of amisulpride (Solian): a review of 11 clinical studies. Int Clin Psychopharmacol. 14, 209-218, 1999



[i] Feidman R.S., Quenzer L.F. Cytology of nerve cells. In: Fundamentals of Neuropsychopharmacology, R.S. Feldman, L.F. Quenzer (eds.), pp. 41-67.  Sinauer Ass. Inc., Sunderland, 1984.

[ii] Koester J., Resting membrane potential and action potential. In: Principles of  Neural Sciences, E.R. Kandel and J.H. Scwartz (eds.), pp. 49-57.  Elsevier Sci. Publ. Co., Amsterdam, 1985.

[iii] Feldman R.S., Quenzer L.F. Synaptic structure and function. In: Fundamentals of neuropsychopharmacology, R.S. Feldman, L.F. Quenzer (eds.), pp. 83-115. Sinauer Ass. Inc.  Publ., Sunderland, 1984.

[iv] Kandel E.R., Siegelbaum S. Principles underlying electrical and chemical synaptic transmission.  In: Principles of Neural Sciences, E.R. Kandel and J.H. Schwartz (eds.), pp. 89-107. Elsevier Sci.  Publ. Co., Amsterdam, 1985.

[v] Walmsley B., Alvarez F.J., Fyffe R.E.W., Diversity of structure and function at mammalian central syapses, TINS, 2, 81-88, 1998

[vi] Schwartz J.H. Chemical messengers: small molecules and peptides. In: Principles of Neural Science, E.R. Kandel and J.H. Schwartz (eds.), pp. 149-158.  Elsevier Sci. Publ. Co., Amsterdam, 1985.

[vii] Hokfelt T., Johansson O., Holets V., Meister B., Melander T. Distribution of neuropeptides with special reference to their coexistence with classical transmitters. In: Psychopharmacology: The Third Generation of Progress, H.Y. Meltzer (ed.), pp. 401-416.  Raven Press, New York, 1987

[viii] Deutch A.Y. and Bean A.J., Colocalization in Dopamine Neurons, In Psychopharmacology: The Fourth Generation of  Progress, Bloom, FE and Kupfer DJ (eds.), pp.197-207.  Raven Press, New York, 1995

[ix] Watson SJ and Cullinan WE, Cytology and Circuitry, In Psychopharmacology: The Fourth Generation of  Progress, Bloom, FE and Kupfer DJ (eds.), pp. 13-27.  Raven Press, New York, 1995

[x] Schwartz J.H. Molecular aspects of postsynaptic receptors. In: Principles of  Neural Science, E.R. Kandel and J.H. Schartz (eds.), pp. 159-168. Elsevier Sci. Publ. Co. Amsterdam 1985.

[xi] Timmermans P.B.M.W.M., Thoolen M.J.M.C., Autoreceptors in the Central Nervous System.  Med. Res. Rev. 7/3: 307-332, 1987.

[xii] Iversen L.L. Uptake processes for biogenic amines. In: Handbook of Psychopharmacology, Vol. 3, Biochemistry of biogenic amines, L.L Iversen, S.D. Iversen, S.H. Snyder (eds.), pp. 381-442, Plenum Press, New York, 1975.

[xiii] Serra G. and Gessa G.L., Manuale di Psicofarmacologia, Masson, Milano, 1990

[xiv] Bianchine J. R. Drugs for Parkinson's discase, spasticity, and muscle spasms.  In: The pharmacological basis of therapeutics, A. Goodman Gilman, C.S. Goodman, P.W. Rali, F. Murad (eds.), pp. 437-490, McMillan Publ. Co., New York, 1985.

[xv] Goldstein M., Long- and Short-Term Regulation of Tyrosine Hydroxylase, , In Psychopharmacology: The Fourth Generation of  Progress, Bloom, FE and Kupfer DJ (eds.), pp. 189-196. Raven Press, New York, 1995

[xvi] Brodie B.B., Pletscher A.P., Shore P.A. Evidence that serotonin has a role in brain function.  Science 222: 968-970, 1955.

[xvii] Biei J.H., Bopp B.A. Amphetamine: structure-activity relationships. In: Handbook of psychopharmacology, Vol. II, L.L. Iversen S.D. Iversen and S.H. Snyder (eds.), pp. 1-39.  Plenum Press, New York, 1978.

[xviii] Wagner L.A. Minireview.  Subcellular storage of biogenic amines. Life Sci. 17:1755-62, 1975.

[xix] Cooper J.R, Bloom F.E. and Roth R.H. (Eds) The biochemical basis of neuropharmacology, Oxford Univ. Press, Oxford, UK, 1996, pp. 78

[xx] Ketìakin T. Agonists, partial agonists, antagonists, inverse agonists and agonist/antagonists?  TIPS 8: 423-426, 1987.

[xxi] Creese I., Sibley D.R. Receptor adaptations to central acting drugs.  Ann.  Rev. Pharmacol.  Toxic. 21: 357-91, 1981.

[xxii] Rall T.W. Central Nervous System stimulants. The methylxanthines.  In: The Pharmacological basis of therapeutics, A. Goodman Gilman, C.S. Goodman, T.W. Rall, F. Murad (eds.), pp. 589-603.  McMillan Publ. Co., New York, 1985

[xxiii] Manji, H.K., Potter W.Z., Lenox R.H., Signal Trasduction Pathways, Molecular targets for lithium’s Action, Arch. Gen. Psych., 52, 531-543, 1995

[xxiv] Le Moal M., Mesocorticolimbic Dopaminergic Neurons. Functional and Regulatory Roles. In: Psychopharmacology: The Fourth Generation of  Progress, Bloom, FE and Kupfer DJ (eds.), pp. 283-294.  Raven Press, New York, 1995.

[xxv] Fuxe K., Agnati L., Kalia M., Goldstein M., Andersson K., Harfstrand A. Dopaminergic systems in the brain pituitary. In: Basic and clinical aspects of  Neuroscience, E. Fluckiger, E.E. Muller, M.O. Thorner (eds.), pp. 11-25.  Springer-Verlag, Berlin, 1985.

[xxvi] Kalivas PW, Neurotrasmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res. Rev.,  18,75-113, 1993

[xxvii] Le Moal M., Simon H., Mesocorticolimbic dopaminergic network: functional and regulatory roles, Physiol. Rev., 71, 155-234, 1991

[xxviii] Galey D., Jaffard R., Le Moal M., Alternation Behavior, spatial discrimination and reversal after electrocoagulation of the ventral mesencephalic tegmentum in the rat., Behav. Neural Biol., 26, 81-88, 1979

[xxix] Gaffori O., Le Moal M., Disruption of maternal behaviour and appareance of cannibalism after ventral mesencephalic tegmentum lesion, Physiol. Behav., 23, 317-323, 1979

[xxx] Kilty JE., Lorang D., Amara S.G., Cloning and expression of a cocaine-sensitive rat dopamine transporter, Science, 254:578-579, 1991.

[xxxi] The Dopamine Receptors, Neve KA and Neve L (eds) Humana Press, 1997

[xxxii] Di Chiara G., Corsini G.U., Mereu G., Tissari A., Gessa G.L. Self-inhibitory dopamine receptors: their role in the biochemical and behavioral effects of low doses of apomorphine. In: Advances in Biochemical Psychopharmacology, Vol. 19, P.J. Roberts et al. (eds.), pp. 275-292.  Raven Press, New York, 1978.

[xxxiii] Nedergaard S., Bolam J.P., Greenfield S.A. Facilitation of a dendritie calcium conductance by -5-hydroxytryptamine in the substantia nigra. Nature 333: 174-177, 1983

[xxxiv] Seeman P, Niznik B.H., Dopamine D1 receptor pharmacology, ISI Atlas of Science: Pharmacology, 161-170, 1988.

[xxxv] Arnt J, Skarsfeldt T., Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacol., 18, 63-101, 1998

[xxxvi] Wise R.A.: The brain and reward in the neuropharmacological basis of reward. In Liebman J., Cooper S.J., Ed. Oxford University Press, Oxford, 1989.

[xxxvii] Fibiger H.C., Phillips A.G.: Role of catecholamine transmitters in reward systems: implications far the neurobiology of affect. In E. Oreland, Ed. Brain Reward Systems and Abuse. New York Press, New York, 1987, pp. 61-74

[xxxviii] Blackburn J.R., Pfaus J.G., Phillips A.G.: Dopamine functions in appetitive and defensive behaviours. Progress in Neurobiol., 39: 247-279, 1992

[xxxix] Fouriezos G., Hanssan E., Wis R.A.: Neuroleptic-induced attenuation of brain stimulation reward. J.Camp. Physiol. Psychol., 92: 659-669, 1978

[xl] Fibiger H.C., Phillips A.G., Zis A.P.: Deficits in instrumental responding after 6-hydroxydopamine lesion of the nigra-neostriatal dopaminergic projection. Pharmacol. Biochem. Behav., 2: 87-96, 1974

[xli] Frank R.A., Manderscheid P.Z., Panicker 5., Wil-liams E.P., Kokoris D.: Cocaine euphoria, dyspho-ria, and tolerance assessed using drug-induced changes in brain-stimulation reward. Pharmacol. Biochem. Behav., 42: 771-779, 1992

[xlii] Di Chiara G., Imperato A.: Drugs abused by humans preferentialiy increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Prac. Nati. Acad. Sci. U.S.A., 85: 5274-5278, 1988

[xliii] Fiorino D.F., Coury A., Fibiger H.C., Phillips A.G.: Electrical stimulation reward sites in the ventral tegmental area increases dopamine transmis-sion in the nucleus accumbens of the rat. Behav. Brain Res., 55: 131-141, 1993

[xliv] Pettit E.O., Justice J.B. Jr.: Effect of dose on cocaine self-administration behavior and dopamine levels in the nucleus accumbens. Brain Res., 539: 94-102, 1991.

[xlv] Yokel R.A., Wise R.A.: Increased level pressing for amphetamine after pimozide in rats: implica-tions for a dopamine theory of reward. Science, 187: 547-549, 1975

[xlvi] Shaham Y., Stewart J.: Exposure to mild stress enhances the reinforcing efficacy of intravenous heroin self-administration in rats. Psychopharmacology, 114: 523-527, 1994.

[xlvii] Weiss F., Lorang M.T., Bloom F.E., Koob 0.F.: Oral alcohol self-administration stimulates dopamine release in the rat nucleus accumbens: genetic and motivational determinants. Pharmacol. Exp. Ther., 267: 250-258, 1993

[xlviii] Roberts D.C.S., Koob G.F.: Disruption of cocaine self-administration following 6-hydroxy-dopamine lesions of the ventral tegmental area in rats. Pharmacol. Biochem. Behav., 17: 901-904, 1982

[xlix] Lyness W.H., Friedie N.M., Moore K.E.: Destruction of  dopaminergic nerve terminals in the nucleus accumbens: effect on d-amphetamine self-administration. Pharmacol. Biochem. Behav., 11:553-556, 1979

[l] Roberts D.C.S., Koob G.F., Klonoff E., Fibiger H.C.: Extinction and recovery of cocaine self--administration following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacol. Bio-chem. Behav., 12: 781-787, 1980

[li] Pettit H.C., Justice J.B. Jr.: Dopamine in the nucleus accumbens during cocaine self administration as studied by in vivo microdialysis. Pharmacol. Biochem. Behav., 34: 899-904, 1983

[lii] Hemby S.E., Martin T.J., Co C., Dworkin S.I., Smith J.E.: The effects of intravenous heroin administration on extracellular nucleus accumbens dopamine concentrations as determined by in vivo microdialysis. J. Pharmacol. Exp. Ther., 273:592-598, 1995

[liii] Melis M.R., Argiolas A.: Dopamine and sexual behaviour. Neurosci. Biobehav. Rev., 19:19-38, 1995

[liv] Pfaus J.G., Damsma G., Nomikos G.G.., Wenk-ster D.G., Blaha C.D., Phillips A.G., Fibiger H.C.: Sexual behavior enhances central dopamine transmission in the male rat. Brain Res., 530: 345-348, 1990

[lv] Agmo A., Fernandez H.: Dopamine and sexual behavior in the male rat: A revaluation. J. Neural. Transm., 77: 21-37, 1989

[lvi] Damsma G., Pfaus J.G., Wenkstern D., Phillips A.G., Fibiger H.C.: Sexual behavior increases dopamine transmission in the nucleus accumbens and striatum of male rats: comparison with novelty and locomotion. Behav. Neurosci., 106: 181-191, 1992

[lvii] Pleim E.T., Matochick J.A., Barfield R.J., Auer-bach S.B.: Correlation of dopamine release in the nucleus accumbens with masculine sexual behavior in rats. Brain Res., 524: 160-163, 1990

[lviii] Agmo A., Berenfeld R.: Reinforcing properties of ejaculation in the male rat: role of opioids and dopamine. Behav. Neurosci., 104: 177-182, 1990

[lix] McCullough L.D., Salamone J.D.: Involvement of nucleus accumbens dopamine in the motor activity induced by periodic food presentation: a micro-dialysis and behavioral study. Brain Res., 592: 29-36, 1992

[lx] Hernandez L., Hoebel B.G.: Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measures by microdialysis. Life Sci., 42: 1705-1712, 1988

[lxi] Schildkraut J.J., Watson R.K., Draskoczy P.R. et  al.: Amphetamine withdrawal: depression and MHPG excretion. Lancet, 1971; 2: 485-486.

[lxii] Weddington W.W., Brown B.S., Haertzen C.A. et al.: Changes in mood, craving, and sleep during short-term abstinence reported by male cocaine addicts. A controlled, residential study. Arch. Gen. Psychiatry, 47: 861-868, 1990

[lxiii] Gawin F.H., Kleber H.D.: Abstinence symptomatology and psychiatric diagnosis in chronic cocaine abusers. Arch. Gen. Psychiatry, 1986; 43:108-116.

[lxiv] Watson R.: Amphetamine withdrawal: Affective state, sleep patterns and MHPG excretion. Am. J. Psychiatry, 129: 263-269, 1972

[lxv] Watson R., Bakos L., Compton E., Gawin F.: Cocaine use and withdrawal: the effect an sleep and mood. Am. J. Drug Alcohol Abuse, 18:2128-2132, 1992

[lxvi] Markou A., Koob G.F.: Post cocaine anhedonia: an animal model of cocaine withdrawal. Neuropsychopharmacology, 4: 17-26, 1991

[lxvii] Mucha R.F.: Is the motivational effect of opiate withdrawal reflected by common somatic indices of precipitated withdrawal? A place conditioning study in the rat. Brain Res., 418: 214-220, 1987

[lxviii] Pilcher C.W.T., Stolemar I.P.: Conditioned flavor aversion for assessing precipitated morphine abstinence in rats. Pharmacol. Biochem. Behav., 4: 327-334, 1976

[lxix] Robertson M.W., Leslie C.A., Bennett J.P.Jr.: Apparent synaptic dopamine deficiency induced by withdrawal from chronic cocaine treatment. Brain Res., 538: 337-339, 1991

[lxx] Rossetti Z.I., Hmaidan Y., Gessa G.L.: Marked inhibition of mesolimbic dopamine release: a common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. Eur. J. Pharmacol., 221:227-234, 1992

[lxxi] Acquas E., Carboni E., Di Chiara G.: Profound depression of mesolimbic dopamine release after morphine withdrawal in dependent rats. Eur. J.Pharmacol., 193: 133-13, 1991

[lxxii] Acquas E., Di Chiara G.: Depression of mesolimbic dopamine transmission and sensitization morphine during opiate abstinence. J. Neurochem.,58: 620-1624, 1992.

[lxxiii] Willner P.: Animal models of depressions: validity and application. In Gessa G.L., Ed. Neurobiology Treatment, Raven Press, New York, 1995; 19-41.

[lxxiv] Porsolt R.D.: Behavioral despair. In: Enna S.J. Ed. Antidepressant: neurochemical, behavioral and clinical perspective, Raven Press, New York, 1981, pp. 121-139.

[lxxv] Gambarana C., Ghiglieri O., Taddei I., Tagliamonte A., De Montis M.G.: Imipramine and fluoxetine prevent the learned helplessness behavior acquisition in rats through a distinct mechanism of action. Behav. Pharmacol., 5: 66-73, 1995

[lxxvi] Willner P.: Dopamine and depression: a review of recent evidence. Brain Res.  Rev.,  13:181-186, 1983

[lxxvii] Rossetti Z.L., Lai M., Hmaidan Y., Gessa G.L.: Depletion of mesolimbic dopamine during behavioral despair: partial reversal by chronic imipramine. Eur. J. Pharmacol., 242: 313-315, 1993

[lxxviii] Serra G; Argiolas A., Fadda F., Melis MR, Gessa GL ., Repeated electroconvulsive shock prevents the sedative effect of small doses of apomorphine, Psychopharmacol., 73: 194-196, 1981.

[lxxix] Serra G; Collu M; D'Aquila PS; De Montis GM; Gessa GL Possible role of dopamine D1 receptor in the behavioural supersensitivity to dopamine agonists induced by chronic treatment with antidepressants. Brain Res, 527: 234-43, 1990.

[lxxx] Collu M; Poggiu AS; Devoto P; Serra G, Behavioural sensitization of mesolimbic dopamine D2 receptors in chronic fluoxetine-treated rats. Eur. J. Pharmacol. 322: 123-127, 1997

[lxxxi] Rossetti ZL; D'Aquila PS; Hmaidan Y; Gessa GL; Serra G, Repeated treatment with imipramine potentiates cocaine-induced dopamine release and motor stimulation., Eur J Pharmacol,  201: 243-5,1991.

[lxxxii] Serra G., Collu M., D'Aquila P.S., Gessa G.L.. Role of the mesolimbic dopamine system in the mechanism of action of antidepressants. in: Proceedings of XVIII C.I.N.P. Congress Satellite Symposium «The Biology and Pharmacology of Manic-Depressive Disordes: from Molecular Theories to Clinical Practice», Copenhagen. Pharmacol.. Toxicol., 1992; 71: 72-85

[lxxxiii] Serra G., Collu M., D'Aquila P.S., De Montis, M.G., Gessa G.L.. On the mechanism involved in the behavioral supersensitivity to DA agonists induced by chronic antidepressants, in Dopamine and Mental Depression, Gessa GL and Serra G (Eds), Pergamon Press, Oxford, Adv. in the Biosciences vol. 77, 1990, pp. 121-138

[lxxxiv] De Montis GM; Devoto P; Gessa GL; Porcella A; Serra G; Tagliamonte A, Selective adenylate cyclase increase in the limbic area of long-term imipramine-treated rats. Eur J Pharm 180. 169-74, 1990

[lxxxv] Serra G; Collu M; D'Aquila PS; De Montis GM; Gessa GL Does chronic imipramine facilitate neurotransmission at dopamine-D1 receptor level? Pharmacol. Res., 21: s55-s56, 1989.

[lxxxvi] Serra G., Collu M., D'Aquila P.S., De Montis G.M., Gessa G.L.: Possible role of dopamine D1 receptor in the behavioural supersensitivity to dopamine agonists induced by chronic treatment with antidepressants. Brain Res., 527: 234-243, 1990

[lxxxvii] Serra G; Collu M; D'Aquila P; Pani L; Gessa GL Are D1 dopamine receptor agonists potential antidepressants? Pharmacol Res. Comm., 20: 1121-1122, 1988.

[lxxxviii] D'Aquila PS; Collu M; Pani L; Gessa GL; Serra G., Antidepressant-like effect of selective dopamine D1 receptor agonists in the behavioural despair animal model of depression., Eur. J. Pharmacol., 262:107-111, 1994.

[lxxxix] De Montis GM; Devoto P; Gessa GL; Meloni D; Porcella A; Saba P; Serra G; Tagliamonte ACentral dopaminergic transmission is selectively increased in the limbic system of rats chronically exposed to antidepressants. Eur J Pharmacol. 180: 31-35, 1990

[xc] Serra G; Argiolas A., Fadda F., Melis MR, Gessa GL ., REM sleep deprivation induces subsensitivity of dopamine receptors mediating sedation in rats, Eur J Pharmacol. 72: 131-135, 1981.

[xci] Nomikos G.G., Damsma O., Wenkstern D., Fibiger  H.C.:  Chronic  desipramine enhances amphetamine-induced increases in interstitial concentrations of dopamine in the nucleus accumbens. Eur. J. Pharmacol.,195: 63-73, 1991

[xcii] Serra G; Argiolas, A; Klimek, V., Fadda F., Gessa GL, Chronic treatment with antidepressants prevents the inhibitory effect of small doses of apomorphine on dopamine synthesis and locomotor activity. Life Sci., 25: 415-424, 1979.

[xciii] Spyraki C., Fibiger HC., Behavioural evidence of supersensitivity of postsinaptic dopamine receptors in the mesolimbic system after chronic administration of desipramine, Eur. J. Pharmacol., 74, 195-206, 1981

[xciv] Rosin DL, Melia K., Knorr AM., Nestler EJ, Roth RH, Duman RS, Chronic imipramine alters the activity and posphorylation state of tyrosine hydroxylase in dopaminergic regions of rat brain, Neuropsychopharmacol., 12: 113-121, 1995

[xcv] Serra G; Collu M; Gessa GL, Yawning is elicited by D2 dopamine agonists but is blocked by the D1 antagonist, SCH 23390. Psychopharmacol. 91: 330-333, 1987

[xcvi] De Montis GM; Devoto P; Gessa GL; Meloni D; Porcella A; Saba P; Serra G; Tagliamonte A Chronic imipramine reduces (3H)SCH 23390 binding and DA-sensitive adenylate cyclase in the limbic system. Eur J Pharmacol., 167: 299-303, 1989.

[xcvii] Dziedzicka-Wasylewska M., Rogoz R., Klimek V., Maj J., Repeated adimistration of antidepressant drugs affect levels of mRNA coding for D1 and D2 dopamine receptor in the rat brain, J Neural Transm., 104, 515-524, 1997

[xcviii] Starkstein SE, Dysthymia in Parkinson's disease, in Dysthymia in Neurological disorders, Licinio J, Prilipko L., and Bolis C.L. (Eds.) WHO, Geneva, 1997, pp. 83-85

[xcix] Cabib, S; and Puglisi-Allegra S., Stress, depression and the mesolimbic dopamine system. Psychopharmacology Berl., 1996, 128: 331-342

[c] Deutch, AY; Lee MC; Gillham MH; Cameron DA; Goldstein M; Iadarola MJ Stress selectively increases fos protein in dopamine neurons innervating the prefrontal cortex. Cereb Cortex., 1: 273-292 1991

[ci] Deutch, AY; Cameron, DS Pharmacological characterization of dopamine systems in the nucleus accumbens core and shell. Neuroscience., 46: 49-56, 1992

[cii] Kalivas, PW; Duffy, P Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress. Brain Res., 675: 325-328, 1995

[ciii] King, D; Zigmond, MJ; Finlay, JM Effects of dopamine depletion in the medial prefrontal cortex on the stress-induced increase in extracellular dopamine in the nucleus accumbens core and shell. Neuroscience., 77: 141-153, 1997

[civ] Tidey, JW; Miczek, KA, Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study.  Brain Res., 721: 140-149, 1996

[cv] Inoue T; Tsuchiya K; Koyama T Regional changes in dopamine and serotonin activation with various intensity of physical and psychological stress in the rat brain. Pharmacol Biochem Behav., 49: 911-920, 1994

[cvi] Jordan, S; Kramer, GL; Zukas, PK; Petty, F Previous stress increases in vivo biogenic amine response to swim stress. Neurochem Res., 19: 1521-1525, 1994

[cvii] Henry, C; Guegant, G; Cador, M; Arnauld, E; Arsaut, J; Le-Moal, M; Demotes-Mainard J Prenatal stress in rats facilitates amphetamine-induced sensitization and induces long-lasting changes in dopamine receptors in the nucleus accumbens. Brain Res.,  685: 179-186, 1995

[cviii] Alonso, SJ; Navarro, E; Rodriguez, M, Permanent dopaminergic alterations in the n. accumbens after prenatal stress. Pharmacol. Biochem. Behav., 49: 353-358, 1994

[cix] Cabib, S; Puglisi-Allegra, S; D'Amato, FR Effects of postnatal stress on dopamine mesolimbic system responses to aversive experiences in adult life. Brain Res., 604: 232-239, 1993

[cx] Brake, WG; Noel, MB; Boksa, P; Gratton, A Influence of perinatal factors on the nucleus accumbens dopamine response to repeated stress during adulthood: an electrochemical study in the rat. Neuroscience, 77: 1067-1076, 1997

[cxi] Lipska, BK; Chrapusta, SJ; Egan, MF; Weinberger, DR Neonatal excitotoxic ventral hippocampal  damage alters dopamine response to mild repeated stress and to chronic haloperidol. Synapse., 20: 125-130, 1995.

[cxii] Kaneyuki, H; Yokoo, H; Tsuda, A; Yoshida, M; Mizuki, Y; Yamada, M; Tanaka, M Psychological stress increases dopamine turnover selectively in mesoprefrontal dopamine neurons of rats: reversal by diazepam. Brain Res., 557: 154-161, 1991.

[cxiii] Doherty, MD; Gratton, A Medial prefrontal cortical D1 receptor modulation of the meso-accumbens dopamine response to stress: an electrochemical study in freely-behaving rats. Brain Res., 715: 86-97, 1996

[cxiv] Murphy, BL; Arnsten, AF; Goldman, Rakic, PS; Roth, RH Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc Natl Acad Sci, U.S.A., 93: 1325-1329, 1996

[cxv] Murphy, BL; Arnsten, AF; Jentsch, JD; Roth, RH Dopamine and spatial working memory in rats and monkeys: pharmacological reversal of stress, induced impairment.  J. Neurosci., 16: 7768-7775, 1996

[cxvi] Meiergerd, SM; Schenk, JO; Sorg, BA Repeated cocaine and stress increase dopamine clearance in the rat medial prefrontal cortex.  Brain Res., 773: 203-207, 1997

[cxvii] Zahrt, J; Taylor, JR; Mathew, RG; Arnsten, AF Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance.  J Neurosci., 17: 8528-8535, 1997,

[cxviii] Keefe, KA; Stricker, EM; Zigmond, MJ; Abercrombie, ED Environmental stress increases extracellular dopamine in striatum of 6-hydroxydopamine-treated rats: in vivo microdialysis studies. Brain Res., 527: 350-353, 1990.

[cxix] Deutch, AY; Clark, WA; Roth, RH Prefrontal cortical dopamine depletion enhances the responsiveness of mesolimbic dopamine neurons to stress Brain Res., 521: 311-5, 1990

[cxx] Jaskiw, GE; Karoum, FK; Weinberger, DR Persistent elevations in dopamine and its metabolites in the nucleus accumbens after mild subchronic stress in rats with ibotenic acid lesions of the medial prefrontal cortex. Brain Res., 534: 321-323, 1990.

[cxxi] Feenstra, MG; Kalsbeek, A; van-Galen, H Neonatal lesions of the ventral tegmental area affect monoaminergic responses to stress in the medial prefrontal cortex and other dopamine projection areas in adulthood. Brain Res., 596: 169-182, 1992.

[cxxii] Zebrowska-Lupina, I; Stelmasiak, M; Porowska, A Stress-induced depression of basal motility: effects of antidepressant drugs. Pol J Pharmacol Pharm., 42: 97-104, 1990

[cxxiii] Sampson , D; Willner, P; Muscat, R Reversal of antidepressant action by dopamine antagonists in an animal model of depression. Psychopharmacology Berl., 104: 491-495, 1991

[cxxiv] Muscat, R; Papp, M; Willner, P Reversal of stress, induced anhedonia by the atypical antidepressants, fluoxetine and maprotiline. Psychopharmacology, Berl., 109: 433-438, 1992.

[cxxv] Papp, M; Willner, P; Muscat, R Behavioural sensitization to a dopamine agonist is associated with reversal of stress, induced anhedonia. Psychopharmacology, Berl., 110: 159-164, 1993.

[cxxvi] Willner, P; Lappas, S; Cheeta, S; Muscat, R Reversal of stress, induced anhedonia by the dopamine receptor agonist, pramipexole. Psychopharmacology, Berl., 115: 454-462, 1994.

[cxxvii] Willner P., Pharmacology of anhedonia.  Eur. Neuropsychopharmacol. 5 (suppl 3), 214s-221s, 1995.

[cxxviii] Kiyatkin, EA; Belyi, VP; Rusakov, DYu; Maksimov, VV; Pankratova, NV; Rozhanets, VV, Long-term changes of striatal D-2 receptors in rats chronically exposed to morphine under aversive life conditions. Int J Neurosci., 58: 55-61, 1991.

[cxxix] Tomic, M; Joksimovic, J Glucocorticoid status affects the response of rat striatal dopamine D2 receptors to hyperthermia and turpentine treatment. Endocr Regul., 25: 225-230, 1991

[cxxx] Puglisi-Allegra, S; Kempf, E; Schleef, C; Cabib, S Repeated stressful experiences differently affect brain dopamine receptor subtypes. Life Sci., 48: 1263-1268, 1991.

[cxxxi] Papp, M; Klimek, V; Willner, P Parallel changes in dopamine D2 receptor binding in limbic forebrain associated with chronic mild stress, induced anhedonia and its reversal by imipramine. Psychopharmacology Berl., 115: 441-446, 1994.

[cxxxii] Sato, Y; Kumamoto, Y Psychological stress and sexual behavior in male rats. II. Effect of psychological stress on dopamine and its metabolites in the critical brain areas mediating sexual behavior Nippon Hinyokika Gakkai Zasshi., 83: 212- 219, 1992.

[cxxxiii] Wang, CT; Huang, RL; Tai, MY; Tsai, YF; Peng, MT Dopamine release in the nucleus accumbens during sexual behavior in prenatally stressed adult male rats. Neurosci Lett., 200:29-32, 1995.

[cxxxiv] Sugiura, K; Yoshimura, H; Yokoyama, M An animal model of copulatory disorder induced by social stress in male mice: effects of apomorphine and L, dopa. Psychopharmacology  Berl., 133: 249-255, 1997.

[cxxxv] Glavin, GB, Central dopamine involvement in experimental gastrointestinal injury Prog Neuropsychopharmacol Biol Psychiatry., 16:217-221, 1992

[cxxxvi] Glavin, GB, Dopamine: a stress modulator in the brain and gut. Gen Pharmacol., 23: 1023-1026, 1992

[cxxxvii] Desai, JK; Parmar, NS Gastric and duodenal anti-ulcer activity of sulpiride, a dopamine D2 receptor antagonist, in rats. Agents Actions., 42: 149-153, 1994.

[cxxxviii] Puri, S; Ray, A; Chakravarti, AK; Sen, PA A differential dopamine receptor involvement during stress ulcer formation in rats. Pharmacol Biochem Behav., 47: 749-752, 1994.

[cxxxix] Nomura, K; Maeda, N; Yoshino, T; Yamaguchi, I Different mechanisms mediated by dopamine D1 and D2 receptors are involved etiologically in activity, stress gastric lesion of the rat. J Pharmacol Exp Ther., 273: 1001-1007, 1995

[cxl] Kawakita, N; Nagahata, Y; Saitoh, Y Immunohistochemical study of dopamine in rat gastric mucosa with acute gastric ulcer. J Gastroenterol., 29: 695-702, 1994

[cxli] Lechin, F; van-der-Dijs, B; Rada, I; Jara, H; Lechin, AE; Cabrera, A; Lechin, ME; Jimenez, V; Gomez, F; Villa, S; et-al Plasma neurotransmitters and cortisol in duodenal ulcer patients. Role of stress. Dig Dis Sci., 35: 1313-1319, 1990

[cxlii] Akil, HA and Morano, IM, Stress In Psychopharmacology the Fourth Generation of Progress, Kupfer D. and Bloom F. (Eds), Raven Press, Ltd, New York, 1995, pp. 773-785

[cxliii] Freeman, HL Historical and nosological aspects of dysthimia. Acta Psychiatr Scand, 89S, 7-11, 1994

[cxliv] Slater E, Roth M., Clinical Psychiatry 3rd edn. London, Bailliere, Tindall & Cassell, 1969

[cxlv] Arieti S., The American Handbook of Psychiatry, 2nd edn. New York, Basic Books, 1974

[cxlvi] Redlich FC, Freedman DX. The theory and pratice of psychiatry, New York, Basic Books, 1974